

Advanced Mathematics Support Programme ${ }^{\ominus}$

Did you know?

This is a well known formula that you might recognise.

$$
F=\frac{9}{5} C+32
$$

It is used to change temperatures in degrees Celsius ${ }^{\circ} \mathrm{C}$ to degrees Fahrenheit ${ }^{\circ} \mathrm{F}$

For example: If it is $20^{\circ} \mathrm{C}$ to find the temperature in ${ }^{\circ} \mathrm{F}$ you simply substitute $\mathrm{C}=20$ into the formula above:

```
68F
```

What would I need to do if I wanted to convert from Fahrenheit to Celsius??

(Jamsp

Rearranging 1

1. Solve $3 x+25=60$
2. Rearrange $z=w+3$ to make w the subject
3. Rearrange $5 x-4=2 y$ to make x the subject
4. Rearrange $y=\frac{t}{6}$ to make t the subject
5. $y=6 p^{2}+2$ rearrange to make p the subject
6. The area of a circle is found using $\mathrm{A}=\pi r^{2}$ Write the equation you would use to find the radius.
7. In a right angled triangle $\sin x=\frac{O p p}{H y p}$ write down the equation for finding the opposite side.
8. To change temperatures in Celsius to Fahrenheit this formula is used.

$$
F=\frac{9}{5} C+32
$$

Rearrange to give the formula for converting Celsius to Fahrenheit

Rearranging 1

Solutions on the next slide....

Damsp

Rearranging 1 Solutions

1. Solve $3 x+25=60$

$$
\begin{gathered}
3 x=60-25 \\
3 x=35 \\
x=\frac{35}{3}
\end{gathered}
$$

2. Rearrange $z=w+3$ to make w the subject

$$
\begin{gathered}
z-3=w \\
\text { or } w=z-3
\end{gathered}
$$

3. Rearrange $5 x-4=2 y$ to make x the subject
$5 x=2 y+4$
$x=\frac{2 y+4}{5}$
4. Rearrange $y=\frac{t}{6}$ to make t the subject

$$
\begin{gathered}
6 y=t \\
\text { or } t=6 y
\end{gathered}
$$

(Damsp
 Rearranging 1 Solutions

5. $y=6 p^{2}+2$ rearrange to make p the subject

$$
\begin{gathered}
y-2=6 p^{2} \quad p^{2}=\frac{y-2}{6} \\
p= \pm \sqrt{\frac{y-2}{6}}
\end{gathered}
$$

6. The area of a circle is found using $A=\pi r^{2}$ Write the equation you would use to find the radius.
7. In a right angled triangle $\sin x=\frac{O p p}{H y p}$ write down the equation for finding the opposite side.
8. To change temperatures in Celsius to Fahrenheit this formula is used.

$$
F=\frac{9}{5} C+32
$$

Rearrange to give the formula for converting Celsius to Fahrenheit

$$
\begin{gathered}
F=\frac{9}{5} C+32 \\
F-32=\frac{9}{5} C \\
5(F-32)=9 C \\
\frac{5}{9}(F-32)=C
\end{gathered}
$$

Rearranging 2

1. Make x the subject of $x-f=y+b$
2. Make y the subject $t y-x^{2}=b$
3. Make c the subject $a c+d=m^{2}$
4. Make a the subject $x(a-e)=d$
5. The area of a sector of a circle is given by $A=\frac{\theta \pi r^{2}}{360}$ Express θ in terms of A, π and r
6. Make y the subject $b(y-b)=b^{2}$
7. To find velocity, v, we use the formula $v^{2}=u^{2}+2 a s$
Rearrange to find s
8. Make x the subject $m(y-x)=t$

Rearranging 2

Solutions on the next slide....

Damsp
 Rearranging 2 Solutions

1. Make x the subject of $x-f=y+b$
2. Make y the subject $t y-x^{2}=b$
3. Make c the subject $a c+d=m^{2}$
4. Make a the subject $x(a-e)=d$

$$
x=y+b+f
$$

$$
\begin{aligned}
t y & =b+x^{2} \\
y & =\frac{b+x^{2}}{t}
\end{aligned}
$$

$$
\begin{gathered}
a c=m^{2}-d \\
c=\frac{m^{2}-d}{a}
\end{gathered}
$$

$$
\begin{aligned}
& x a-x e=d \\
& x a=d+x e
\end{aligned} \quad \text { or } \quad a-e=\frac{d}{x}
$$

$$
a=\frac{d+x e}{x} \quad a=
$$

Damsp
 Rearranging 2 Solutions

$$
\begin{gathered}
b y-b^{2}=b^{2} \\
b y=2 b^{2} \\
y=2 b
\end{gathered}
$$

6. To find velocity, v, we use the formula

$$
v^{2}=u^{2}+2 a s
$$

Rearrange to find s
7. The area of a sector of a circle is given by $A=\frac{\theta \pi r^{2}}{360}$ Express θ in terms of A, π and r
8. Make x the subject $m(y-x)=t$

$$
\begin{gathered}
360 A=\theta \pi r^{2} \\
\theta \pi r^{2}=360 A \\
\theta=\frac{360 A}{\pi r^{2}}
\end{gathered}
$$

$$
\begin{gathered}
m y-m x=t \\
m y=t+m x \\
m x=m y-t \\
x=\frac{m y-t}{m}
\end{gathered}
$$

(${ }^{2}$ amsp

Line them up 1

Which is which?

$$
\begin{aligned}
& y=2 x+5 \\
& 2 y+x+5=0 \\
& y+2 x=1
\end{aligned}
$$

How does rearranging enable you to justify your answer?

Which is which?

- $y=2 x+5$
- $2 y+x+5=0$
- $y+2 x=1$
\downarrow
Why?
- $y=2 x+5$
- $y=-\frac{x}{2}-\frac{5}{2}$
- $y=-2 x+1$

By rearranging into the form $\boldsymbol{y}=\boldsymbol{m x}+c$ you can easily compare the gradient and intercept of each line.

Line them up 2
Label the lines with these equations.

$$
\begin{gathered}
y=4-3 x \\
y+3 x+4=0 \\
y+3 x=0 \\
y=3 x \\
y=3 x+4 \\
y-3 x+4=0
\end{gathered}
$$

Line them up 2 Solution
Label the lines with these equations.

Pairing up

Can you sort the cards into pairs under the following headings:

- These lines are perpendicular
- These lines have the same x intercept
- These lines are parallel
- These lines go through the point $(1,5)$
- These lines have the same y intercept
- These lines...

$$
y=-(x+8)
$$

$$
y=4 x+4
$$

$$
y=8 x-3
$$

$$
4 y=x+3
$$

$$
y+6 x=11
$$

$$
y+4 x+6=0
$$

() amsp

Pairing up Solution

Can you sort the cards into pairs under the following headings:

- These lines are perpendicular

$$
4 y=x+3
$$

- These lines are parallel

$$
y+4 x+6=0
$$

$$
y=4 x+4 \quad 2 y=8 x+3
$$

- These lines have the same x intercept

$$
2 y+x=4
$$

$$
3 y=2 x-8
$$

- These lines are the same line

$$
y+x+8=0 \quad y=-(x+8)
$$

Pipe Problem
Can you find the radius of the pipe shown if the only measurement you can take is the one marked h ?

Rearranging and Functions

A function relates an input to an output

Here is an example of a function machine

Complete the following table for the function machine shown

Input	Output
5	
-4	
x	
	17
	x

What do you notice?

Rearranging and Functions Solutions

A function relates an input to an output

$-\sqrt{\times 3}$	
Input	Output
5	17
-4	-10
x	$3 x+2$
5	17
$\frac{x-2}{3}$	x

An inverse function goes the other way
To reverse the process inverse operations are used.
Output $\longleftarrow \div 3-2-$ Input
Important! The inverse should give us back the original value

(amsp Rearranging and Functions Solutions

Let's introduce function notation that you will use in A level maths:

Input	Output	$f(5)=3 \times 5+2=17$	
5	17		
-4	-10	\longrightarrow	$f(-4)=3 \times-4+2=-10$
x	$3 x+2$	\longrightarrow	$f(x)=3 x+2$
$\div 3$	-2-	An inverse function goes the other way	
5	17	\longrightarrow	${ }^{-1}(17)=(17-2) / 3=5$
$\frac{x-2}{3}$	x	\longrightarrow	$f^{-1}(x)=\frac{x-2}{3}$

Important! The inverse should give us back the original value Lets check: $f(5)=17$ and $f^{-1}(17)=5$

Rearranging and Functions

Original function
 $$
f(x)=3 x+2
$$

Inverse function
 $$
f^{-1}(x)=\frac{x-2}{3}
$$

Find the inverse of each of these functions.

$$
\begin{array}{ll}
\text { 1. } & f(x)=3 x-5 \\
\text { 2. } & f(x)=4 x+7 \\
\text { 3. } & f(x)=\frac{x}{2}+1
\end{array}
$$

Rearranging and Functions

Solutions on the next slide....

Rearranging and Functions

Find the inverse of each of these functions.

$$
\begin{array}{ll}
\text { 1. } f(x)=3 x-5 & f^{-1}(x)=\frac{x+5}{3} \\
\text { 2. } f(x)=4 x+7 & f^{-1}(x)=\frac{x-7}{4} \\
\text { 3. } f(x)=\frac{x}{2}+1 & f^{-1}(x)=2(x-1)
\end{array}
$$

Rearranging and Functions

Find the inverse of each of these functions.

$$
\begin{array}{ll}
\text { 4. } f(x)=\frac{x+2}{3} & f^{-1}(x)=3 x-2 \\
\text { 5. } f(x)=\frac{2}{3} x+3 & f^{-1}(x)=\frac{3(x-3)}{2} \\
\text { 6. } f(x)=3-2 x & f^{-1}(x)=\frac{3-x}{2}
\end{array}
$$

If you want to explore functions further then click here.

Still want more?

Read - Ten key reasons why developing algebraic skills is so important!

Discover more about the graphs of a function and its inverse by exploring this GeoGebra activity.

Watch and learn how maths, in particular the correct use of brackets, influences music, poetry and even rap!

Contact the AMSP

01225716492

@
admin@amsp.org.uk
amsp.org.uk
Advanced_Maths

