

Advanced Mathematics Support Programme ${ }^{\text {® }}$

amsp ${ }^{\circ}$

Did you know?

- Being able to express equations in different forms gives us different information
- Later we'll be looking at information needed to sketch graphs
- If you continue your maths studies to A Level Further Maths, you will draw graphs such as these

$r=1-\sin \theta$

$$
\left(x^{2}+y^{2}-1\right)^{3}-x^{2} y^{3}=0
$$

Further Factorising 1

1. The equation of a line is given as

$$
3 y+4 x-2=0 .
$$

What is the gradient of the line?
2. A rectangle has area A, length y and width $x-2$. Write an expression for the length of the rectangle, y, in terms of A and x
3. Make x the subject of:

$$
a x-y=z+b x
$$

5. John says the first step to rearranging $\frac{x-a}{f}=3 g$ is to add a to $3 g$. Is he right? Explain your answer.
6. Make a the subject of

$$
5(a-t)=3(a+x)
$$

7. Make x the subject of

$$
a y+x=4 x+x b
$$

8. Make x the subject of

$$
2 \pi \sqrt{x+t}=4
$$

Further Factorising 1

II

Solutions on the next slide....

Damsp Further Factorising 1 Solutions

1. The equation of a line is given as

$$
3 y+4 x-2=0 .
$$

What is the gradient of the line?
2. A rectangle has area A, length y and width $x-2$. Write an expression for the length of the rectangle, y, in terms of A and x
3. Make x the subject of:

$$
a x-y=z+b x
$$

4. Make b the subject of:

$$
5(b-p)=2(b x+3)
$$

$$
\begin{aligned}
& 3 y=-4 x+2 \\
& y=-\frac{4}{3} x+\frac{2}{3} \\
& \text { gradient }=-\frac{4}{3}
\end{aligned}
$$

$$
\begin{gathered}
A=y(x-2) \\
y=\frac{A}{x-2}
\end{gathered}
$$

$$
\begin{gathered}
a x-b x=z+y \\
x(a-b)=z+y \\
x=\frac{z+y}{a-b}
\end{gathered}
$$

$$
\begin{gathered}
5 b-5 p=2 b x+6 \\
5 b-2 b x=6+5 p \\
b(5-2 x)=6+5 p \\
b=\frac{6+5 p}{5-2 x}
\end{gathered}
$$

(Damsp Further Factorising 1 Solutions

5. John says the first step to rearranging $\frac{x-a}{f}=3 g$ is to add a to $3 g$. Is he right?
Explain your answer.
6. Make a the subject of

$$
5(a-t)=3(a+x)
$$

7. Make x the subject of

$$
a y+x=4 x+x b
$$

8. Make x the subject of

$$
2 \pi \sqrt{x+t}=4
$$

No, the first step is to multiply by f

$$
\begin{gathered}
5 a-5 t=3 a+3 x \\
5 a-3 a=3 x+5 t \\
2 a=3 x+5 t \\
a=\frac{3 x+5 t}{2} \\
a y=3 x+x b \\
x(3+b)=a y \\
x=\frac{a y}{3+b}
\end{gathered}
$$

$$
\sqrt{x+t}=\frac{4}{2 \pi}
$$

$$
\sqrt{x+t}=\frac{2}{\pi}
$$

$$
x+t=\frac{4}{\pi^{2}} \quad x=\frac{4}{\pi^{2}}-t
$$

Further Factorising 2

1. Make y the subject of

$$
x y+6=7-k y
$$

2. Find an expression for the area of a rectangle with length, $(y-x)$ and width, $(x-2)$
3. Rewrite your expression in Q2 to have y expressed in terms of A and x
4. Displacement can be expressed as

$$
s=u t+\frac{1}{2} a t^{2}
$$

Express a in terms of s, u and t
6. Make y the subject of $\sqrt{b y^{2}-x}=D$
7. The area of a trapezium has formula

$$
A=\frac{1}{2}\left(\frac{a+b}{h}\right)
$$

Express h in terms of A, a and b
8. Make t the subject $b(t+a)=x(t+b)$

Further Factorising 2

II

Solutions on the next slide....

(Damsp

Further Factorising 2 Solutions

1. Make y the subject of

$$
x y+6=7-k y
$$

2. Find an expression for the area of a rectangle with length, $(y-x)$ and width, ($x-2$)
3. Rewrite your expression in Q2 to have y expressed in terms of A and x
4. Make y the subject of $\frac{4}{y}+1=2 x$

$$
\begin{gathered}
x y+k y=1 \\
y(x+k)=1 \\
y=\frac{1}{x+k}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Area }=(y-x)(x-2) \\
& A=x y-x^{2}-2 y+2 x
\end{aligned}
$$

$$
\begin{gathered}
A=x y-x^{2}-2 y+2 x \\
2 y-x y=2 x-x^{2}-A \\
y(2-x)=2 x-x^{2}-A \\
y=\frac{2 x-x^{2}-A}{2-x} \\
\frac{4}{y}=2 x-1 \\
y(2 x-1)=4 \\
y=\frac{4}{2 x-1}
\end{gathered}
$$

amsp

Further Factorising 2 Solutions

5. Displacement can be expressed as

$$
s=u t+\frac{1}{2} a t^{2}
$$

Express a in terms of s, u and t
6. Make y the subject of $\sqrt{b y^{2}-x}=D$

$$
\begin{gathered}
\frac{1}{2} a t^{2}=s-u t \\
a t^{2}=2 s-2 u t \\
a=\frac{2 s-2 u t}{t^{2}} \\
b y^{2}-x=D^{2} \\
b y^{2}=D^{2}+x \\
y^{2}=\frac{\left(D^{2}+x\right)}{b} \\
y= \pm \sqrt{\frac{D^{2}+x}{b}} \\
2 h A=a+b \\
h=\frac{a+b}{2 A}
\end{gathered}
$$

7. The area of a trapezium has formula

$$
A=\frac{1}{2}\left(\frac{a+b}{h}\right)
$$

Express h in terms of A, a and b
8. Make t the subject $b(t+a)=x(t+b)$

$$
\begin{gathered}
b t+b a=x t+x b \\
b t-x t=x b-b a \\
t(b-x)=x b-b a \\
t=\frac{x b-b a}{b-x}
\end{gathered}
$$

amsp ${ }^{\circ}$

Equivalent quadratics

Sort the expressions below in to 4 sets of 4 equivalent expressions.

$x^{2}-25$	$2 x^{2}-2$
$(x+5)(x+6)-x-55$	$(x+5)(x-5)$
$2\left(x^{2}-1\right)$	$(x+5)^{2}-10 x-50$
$2(x+3)(x-1)$	$2(x+1)(x-1)$
$(x+5)^{2}-50$	$2(x+2)^{2}-4 x-14$
$2 x^{2}+4 x-6$	$(x+5)(x-5)+10 x$
$2(x+1)^{2}-8$	$2(x+1)^{2}-4(x+1)$
$x^{2}+10 x-25$	$(x+6)-x+5$

Equivalent quadratics

II

Solutions on the next slide....

Oamsp" Equivalent quadratics Solution

Sort the expressions below in to 4 sets of 4 equivalent expressions.

$x^{2}-25$	$2 x^{2}-2$
$(x+5)(x+6)-x-55$	$(x+5)(x-5)$
$2\left(x^{2}-1\right)$	$(x+5)^{2}-10 x-50$
$2(x+3)(x-1)$	$2(x+1)(x-1)$
$(x+5)^{2}-50$	$2(x+2)^{2}-4 x-14$
$2 x^{2}+4 x-6$	$(x+5)(x-5)+10 x$
$2(x+1)^{2}-8$	$2(x+1)^{2}-4(x+1)$
$x^{2}+10 x-25$	

Mean squares

- Take two positive values greater than 1
- Find the mean of the two values
- Square it

Then

- Take the same two values
- Square them
- Find the mean of the squares

Which value is greater?
Is this always true?
Can you prove it?

Mean squares

- Take two positive values greater than 1
- Find the mean of the two values
- Square it Then
- Take the same two values
- Square them
- Find the mean of the squares

Which value is greater?
Is this always true?
Can you prove it?

- Try out several examples
- Is one expression always bigger than the other?
- Next try using x and y instead.
- If you subtract one expression from the other, can you work out if it's positive or negative?

Mean squares

Follow the link to the solutions

(1)amsp ${ }^{\text {Difference of numeric squares }}$

Problem 1:

Mrs Gryce was asked to calculate 18×12 by Mr Lo who had forgotten his calculator and was doing some marking.

Mrs Gryce quickly responded
"Well, that's just $15^{2}-9$ which is 216 "
Mr Lo was amazed.

- How did she know so quickly what the answer was?

(Damsp' Difference of numeric squares

Problem 2:

- Use the fact that $3 \times 4=12$
- Can you quickly work out a value for (3.5)²?

Can you see a connection between the previous question and this one?

Difference of numeric squares

Follow the link to the solutions

We've all used the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- But where does it come from?
- Can you prove why the quadratic formula works?

The next activity is all about doing just that!

The Quadratic Formula

Rearrange these steps in order to prove the quadratic formula

$$
a x^{2}+b x+c=0 \longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\left(x+\frac{b}{2 a}\right)= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}
$$

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}
$$

$$
a x^{2}+b x=-c
$$

$$
x^{2}+\frac{b}{a} x=-\frac{c}{a}
$$

$$
\left(x+\frac{b}{2 a}\right)= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
$$

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

There are written steps to help you on the next slide if you'd like them

The Quadratic Formula
Match the steps below with the algebra on the previous slide for a slightly easier version
Step 1: Subtract c from both sides
Step 2: Divide both sides by a
Step 3: Complete the square on the left hand side
Step 4: Add $\frac{b^{2}}{4 a^{2}}$ to both sides
Step 5: Make the right hand side into a single expression
Step 6: Take the square root of both sides
Step 7: Simplify the denominator on the right hand side
Step 8: Subtract $\frac{b}{2 a}$ from both sides
Step 9: You now have the quadratic formula!
For a challenge - just use the algebra!

The Quadratic Formula - Rearranging

Follow the link to the solutions

Equations of?
You should have come across an equation like this in your GCSE course:

$$
x^{2}+y^{2}=25
$$

- Can you remember what this would look like?
- Can you describe it?

You could draw this on DESMOS https://www.desmos.com/calculator

Equations of Circles

$$
x^{2}+y^{2}=25
$$

Represents a circle with centre $(0,0)$ and radius 5

Generally the equation of a circle with centre $(0,0)$ and radius r can be written as

$$
x^{2}+y^{2}=r^{2}
$$

But what happens if the centre is not $(0,0)$?

Equations of?

Let's have a look at this equation

$$
x^{2}+4 x+y^{2}-6 y=12
$$

We can rearrange this by completing the square separately for the x terms and y terms

$$
x^{2}+4 x=(x+2)^{2}-4 \text { and } y^{2}-6 y=(y-3)^{2}-9
$$

So

$$
\begin{gathered}
x^{2}+4 x+y^{2}-6 y=12 \\
(x+2)^{2}-4+(y-3)^{2}-9=12 \\
(x+2)^{2}+(y-3)^{2}-13=12 \quad \text { Collect like terms } \\
(x+2)^{2}+(y-3)^{2}=25 \quad \text { Rearrange to become }
\end{gathered}
$$

Can be written as

What do you think this equation represents?

Equations of circles

$(x+2)^{2}+(y-3)^{2}=25$

$$
(x+2)^{2}+(y-3)^{2}=25
$$

Represents a circle with
Centre (-2,3)
Radius 5

If we expand this equation

$$
\begin{gathered}
(x+2)^{2}+(y-3)^{2}=25 \\
x^{2}+4 x+4+y^{2}-6 y+9=25 \\
x^{2}+4 x+y^{2}-6 y+13=25 \\
x^{2}+4 x+y^{2}-6 y=12
\end{gathered}
$$

We return it to the original form

Equations of circles

- Can you find the centre and radii of these circles by rearranging into the form

$$
(x+a)^{2}+(y-b)^{2}=r^{2}
$$

$$
x^{2}-8 x+y^{2}-2 y=19
$$

$$
x^{2}+6 x+y^{2}-10 y=15
$$

Equations of circles

Follow the link to the solutions

Still want more?

Discover how using a graphing app such as Desmos or GeoGebra can help you gain insight into circles, tangents and graphs in general. Gain skills useful for A level maths.

Watch a TED talk from Dr Hannah Fry which trys to answer the question "Is life too complex?" You will see that you can actually write equations that model human behaviour!

Contact the AMSP

01225716492
 admin@amsp.org.uk

@
amsp.org.uk
Advanced_Maths

