

Advanced Mathematics Support Programme ${ }^{\text {© }}$

amsp ${ }^{\circ}$

Did you know?

To order fractions you can use the product of their diagonals

Compare these two fractions $\frac{5}{12}$ and $\frac{6}{13}$
$5 \times 13=65$
$6 \times 12=72$
$\frac{5}{12}><\frac{6}{13}$
as $72>65$ then $\frac{6}{13}$ is larger than $\frac{5}{12}$

Compare these two fractions $\frac{42}{98}$ and $\frac{12}{28}$
$42 \times 28=1176 \quad 98 \times 12=1176$
$\frac{42}{98}><\frac{12}{28}$

This means $\frac{42}{98}=\frac{12}{28}$ so are equivalent fractions

If fractions are equivalent then the product of their diagonals will always be equal!

How could you use this to help you when rearranging expressions or equations with fractions?

Rearranging Fractions

1. Rewrite the formula below to make time the subject.

$$
\text { Speed }=\frac{\text { Distance }}{\text { time }}
$$

2. Rearrange to make a the subject of $\frac{x}{y}=\frac{a}{b}$
3. Make x the subject of $\tan \theta=\frac{y}{x}$
4. These triangles are similar.

Show that $x=\frac{c b}{a}$

7. Make a the subject of $\frac{1-a}{1+a}=\frac{x}{y}$
8. Make y the subject of $y(\sqrt{3}+\sqrt{2})=x$ and write it in the form $y=x(\sqrt{a}+\sqrt{b})$

Rearranging Fractions

Solutions on the next slide....

(Damsp Rearranging Fractions Solutions

1. Rewrite the formula below to make time the subject.

$$
\text { Speed }=\frac{\text { Distance }}{\text { time }}
$$

2. Rearrange to make a the subject of

$$
\frac{x}{y}=\frac{a}{b}
$$

3. Make x the subject of $\tan \theta=\frac{y}{x}$
4. These triangles are Show that $x=\frac{b}{a}$

Speed \times time $=$ distance

$$
\text { time }=\frac{\text { distance }}{\text { Speed }}
$$

$$
\begin{array}{l|l|}
\begin{array}{l}
x \\
y \\
x b \\
= \\
b
\end{array} \\
a=\frac{a y}{y} & \begin{array}{l}
\text { Remember the } \\
\text { cross products of } \\
\text { equivalent } \\
\text { fractions are } \\
\text { equal }
\end{array} \\
\tan \theta=\frac{y}{x} \\
x \tan \theta=y \\
x=\frac{y}{\tan \theta}
\end{array}
$$

Because the triangles are similar

$$
\begin{aligned}
\frac{x}{c} & =\frac{b}{a} \\
a x & =b c \\
x & =\frac{b c}{a} \quad \text { as required }
\end{aligned}
$$

(Damsp Rearranging Fractions Solutions

5. Make a the subject of $x=\frac{h+k}{a}$

6. Make x the subject of $x+a=\frac{x+b}{c}$
7. Make a the subject of $\frac{1-a}{1+a}=\frac{x}{y}$
8. Make y the subject of $y(\sqrt{3}+\sqrt{2})=x$ and write it in the form $\mathrm{y}=x(\sqrt{a}+\sqrt{b})$

$$
\begin{gathered}
x=\frac{h+k}{a} \\
x a=h+k \\
a=\frac{h+k}{x} \\
c(x+a)=x+b \\
c x+c a-x=b \\
c x-x=b-c a \\
x(c-1)=b-c a \\
x=\frac{b-c a}{c-1} \\
y(1-a)=x(1+a) \\
y-a y=x+x a \\
y-x=x a+a y \\
a(x+y)=y-x \\
a=\frac{y-x}{x+y} \\
y=\frac{x}{\sqrt{3}+\sqrt{2}} \\
x \\
y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \times \sqrt{2} \\
y=\frac{x \sqrt{3}-x \sqrt{2}}{3}-2 \\
y=x(\sqrt{3}-\sqrt{2})
\end{gathered}
$$

Rearranging Fractions 2

1. Make x the subject of

$$
b c=\frac{x}{a}
$$

2. Make e the subject of

$$
x=\frac{y}{e^{2}}
$$

6. Make x the subject of

$$
4 F=F+\frac{a}{y+x}
$$

7. Make y the subject of

$$
\sqrt{\frac{m(y+a)}{y}}=g
$$

8. A cylinder has a radius of 3 cm and height, h. The total surface area $=30 x \mathrm{~cm}^{2}$.

Find an expression for the surface area and write h in terms of x and π

Rearranging Fractions 2

Solutions on the next slide....

(Damsp Rearranging Fractions 2 Solutions

1. Make x the subject of

$$
b c=\frac{x}{a}
$$

2. Make e the subject of

$$
x=\frac{y}{e^{2}}
$$

3. Write a in terms of x, y, z and b

$$
\frac{b-x a}{z}=y
$$

4. Make v the subject of

$$
\mathrm{C}=\frac{v^{2}-t a}{x}
$$

$$
\begin{gathered}
v^{2}-t a=C x \\
v^{2}=C x+t a \\
v= \pm \sqrt{C x+t a}
\end{gathered}
$$

(Damsp Rearranging Fractions 2 Solutions

5. Rearrange to make x the subject of

$$
\frac{2}{x}+5=6 y
$$

6. Make x the subject of

$$
4 F=F+\frac{a}{y+x}
$$

7. Make y the subject of

$$
\sqrt{\frac{m(y+a)}{y}}=g
$$

$$
\begin{gathered}
\frac{2}{x}=6 y-5 \\
x(6 y-5)=2 \\
x=\frac{2}{6 y-5} \\
3 F=\frac{a}{y+x} \\
3 F y+3 F x=a \\
3 F x=a-3 F y \\
x=\frac{a-3 F Y}{3 F} \\
g^{2}=\frac{m y+m a}{y} \\
g^{2} y=m y+m a \\
g^{2} y-m y=m a \\
y\left(g^{2}-m\right)=m a \\
y=\frac{m a}{g^{2}-m}
\end{gathered}
$$

8. A cylinder has a radius of 3 cm and height, \longrightarrow Surface area of cylinder $=2 \pi r^{2}+2 \pi r h$ h. The total surface area $=30 x \mathrm{~cm}^{2}$.

Find an expression for the surface area and write h in terms of x and π

$$
\begin{gathered}
30 x=\left(2 \pi \times 3^{2}\right)+(2 \times 3 \times \pi \times h) \\
30 x=18 \pi+6 \pi h \\
6 \pi h=30 x-18 \pi \\
h=\frac{30 x-18 \pi}{6 \pi} \\
h=\frac{5 x-3 \pi}{\pi}
\end{gathered}
$$

Wrong Steps

Each expression has been rewritten in different ways.

- Which are not correct rearrangements?
- Can you explain what's gone wrong?

	$c=\frac{3 e^{2}}{d}$
A.	$d=3 e^{2}-c$
B.	$c d=3 e^{2}$
C.	$\frac{d}{e^{2}}=\frac{c}{3}$
D. $\frac{1}{3} c=\frac{e^{2}}{d}$	
E.	$d=\frac{3 e^{2}}{c}$

	$\frac{\sin x}{4}=\frac{\sin y}{a}$
A.	$\frac{a}{4}=\frac{\sin y}{\sin x}$
B.	$\sin y=\frac{4}{a \sin x}$
C.	$\sin x=\frac{4 \sin y}{a}$
D.	$a \sin x=4 \sin y$
E.	$a=\frac{\sin x}{4 \sin y}$

	$\frac{T-a}{T+a}=\frac{x}{y}$
A.	$x(T+a)=y(T-a)$
B.	$x y-a y=y T-y a$
C.	$a=\frac{y(T-a)}{x+y}$
D.	$x a+y a=y T-x T$
E.	$a=\frac{x+y}{y T-y a}$

Wrong Steps

Each expression has been rewritten in different ways.

- Which are not correct rearrangements?
- Can you explain what's gone wrong?

	$\boldsymbol{a}-\frac{b^{2}}{d}=c e$
A.	$b^{2}=\boldsymbol{d}(\boldsymbol{a}+\boldsymbol{c e})$
B.	$\boldsymbol{a}=\boldsymbol{c} \boldsymbol{e}+\frac{b^{2}}{d}$
C.	$\frac{b^{2}}{d}=\boldsymbol{a}-\boldsymbol{c e}$
D.	$\frac{b}{\sqrt{d}}=\sqrt{a}-\sqrt{c e}$
E.	$\boldsymbol{b}= \pm \sqrt{d(a-c e})$

	$y+b=\frac{a y+e}{b}$
A.	$b y+b^{2}=a y+e$
B.	$b y-a y=e+b^{2}$
C.	$y=\frac{e-b^{2}}{b-a}$
D.	$e=b(y+b)-a y$
E.	$y(b-a)=\frac{e-b^{2}}{y}$

Wrong Steps

Solutions on the next slide....

Damsp Wrong Steps Solutions

Each expression has been rewritten in different ways.

- Which are not correct rearrangements?
- Can you explain what's gone wrong?

	$c=\frac{3 e^{2}}{d}$
A.	$d=3 e^{2}-c$
B.	$c d=3 e^{2}$
C.	$\frac{d}{e^{2}}=\frac{c}{3}$
D. $\frac{1}{3} c=\frac{e^{2}}{d}$	
E.	$d=\frac{3 e^{2}}{c}$

	$\frac{\sin x}{4}=\frac{\sin y}{a}$
A.	$\frac{a}{4}=\frac{\sin y}{\sin x}$
B.	$\sin y=\frac{4}{a \sin x}$
C.	$\sin x=\frac{4 \sin y}{a}$
D.	$a \sin x=4 \sin y$
E.	$a=\frac{\sin x}{4 \sin y}$

	$\frac{T-a}{T+a}=\frac{x}{y}$
A.	$x(T+a)=y(T-a)$
B.	$x y-a y=y T-y a$
C.	$a=\frac{y(T-a)}{x+y}$
D.	$x a+y a=y T-x T$
E.	$a=\frac{x+y}{y T-y a}$

Oamsp Wrong Steps Solutions

Each expression has been rewritten in different ways.

- Which are not correct rearrangements?
- Can you explain what's gone wrong?

	$\boldsymbol{a}-\frac{b^{2}}{d}=c \boldsymbol{e}$
A.	$b^{2}=\boldsymbol{d}(\boldsymbol{a}+\boldsymbol{c e})$
B.	$\boldsymbol{a}=\boldsymbol{c} \boldsymbol{e}+\frac{b^{2}}{d}$
C.	$\frac{b^{2}}{d}=\boldsymbol{a}-\boldsymbol{c e}$
D.	$\frac{b}{\sqrt{d}}=\sqrt{\boldsymbol{a}}-\sqrt{c \boldsymbol{c e}}$
E.	$\boldsymbol{b}= \pm \sqrt{\boldsymbol{d}(\boldsymbol{a}-\boldsymbol{c e})}$

	$y+b=\frac{a y+e}{b}$
A.	$b y+b^{2}=a y+e$
B.	$b y-a y=e+b^{2}$
C.	$y=\frac{e-b^{2}}{b-a}$
D.	$e=b(y+b)-a y$
E.	$y(b-a)=\frac{e-b^{2}}{y}$

Prove It!
Using your rearranging skills can you prove each of the following

$$
\begin{aligned}
\text { If } & =\frac{b}{b+c} \\
\text { Show that } \frac{a}{1-a} & =\frac{b}{c}
\end{aligned}
$$

$$
\frac{2 x+3}{4}-\frac{3 x-2}{3}+\frac{1}{6}=\frac{19-6 x}{12}
$$

Prove It!

II

Solutions on the next slide....

Prove It Solutions

$$
\begin{aligned}
& \text { If } \quad a=\frac{b}{b+c} \\
& \text { Show that } \frac{a}{a-1}=\frac{b}{c}
\end{aligned}
$$

$$
\begin{array}{cl}
\frac{a}{1}=\frac{b}{b+c} & \text { Make } a \text { into a fraction } \\
a(b+c)=b & \begin{array}{l}
\text { Using what we know about the product of } \\
\text { the diagonals of equivalent fractions }
\end{array} \\
a b+a c=b & \text { Expand brackets } \\
a c=b-a b & \text { Make } a c \text { the subject } \\
a c=b(1-a) & \text { Factorise the right hand side } \\
b=\frac{a c}{1-a} & \text { Make b the subject } \\
\frac{b}{c}=\frac{a}{1-a} & \begin{array}{l}
\text { Divide both sides by } c, \text { expression as } \\
\text { required }
\end{array}
\end{array}
$$

Prove It Solutions

$$
\frac{n(n-1)}{2}+\frac{n(n+1)}{2} \text { is a square number }
$$

$$
\frac{n^{2}-n}{2}+\frac{n^{2}+n}{2} \quad \text { Expand brackets }
$$

$$
\frac{n^{2}-n+n^{2}+n}{2}
$$

Write as one fraction

$$
\frac{2 n^{2}}{2}
$$

Simplify numerator

$$
n^{2}
$$

Cancel out factor of 2 so left with n^{2} which is a square number as required

Prove It Solutions

$$
\frac{2 x+3}{4}-\frac{3 x-2}{3}+\frac{1}{6}=\frac{19-6 x}{12}
$$

$$
\begin{aligned}
& \frac{2 x+3}{4}-\frac{3 x-2}{3}+\frac{1}{6} \\
& \times 3 \downarrow 2 \\
& \frac{3(2 x+3)}{12}-\frac{4(3 x-2)}{12}+\frac{2}{12}
\end{aligned}
$$

Concentrate on Left hand side

Make a common denominator

$$
\frac{6 x+9}{12}-\frac{12 x-8}{12}+\frac{2}{12}
$$

$$
\frac{6 x+9-(12 x-8)+2}{12}
$$

$$
\begin{gathered}
\frac{6 x+9-12 x+8+2}{12} \\
\frac{19-6 x}{12}
\end{gathered}
$$

Collect terms over single denominator

Simplify

Left hand side is = to right hand side as required

Missing Steps

Complete the steps and fill in the blanks to find an expression for the area of triangle ABC

1. On the diagram draw a perpendicular line from A to $B C$
2. Label the perpendicular line h
3. Find an expression for the perpendicular height, h
$h=$
4. Write down the expression for the base of the triangle

base =
5. Write down an expression to find the area of this triangle using your expressions for base and perpendicular height
\square
area $=$

Hint: You might want to introduce some trigonometry at step 3.

Missing Steps

II

Solutions on the next slide....

Missing Steps Solutions

Complete the steps and fill in the blanks to find an expression for the area of triangle ABC

1. On the diagram draw a perpendicular line from A to $B C$
2. Label the perpendicular line h
3. Find an expression for the perpendicular height, h

$$
\sin \theta=\frac{h}{b} \text { so } h=b \sin \theta
$$

4. Write down the expression for the base of the triangle

\square
5. Write down an expression to find the area of this triangle using your expressions for base and perpendicular height

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \text { base } \times \text { perpendicular height } \\
& A=\frac{1}{2} a \times b \sin \theta \quad \text { or } \quad A=\frac{1}{2} a b \sin \theta
\end{aligned}
$$

Still want more?

Read about how the rearrangement of algebraic expressions can be used in many real life contexts including proving the quadratic formulae!

Discover how trigonometry was developed to become the study of algebraic ratios from numeric beginnings by comparing the merkhet (not comparing the meerkat!)

Play with Lego, visit Paris and do maths all at the same time? It is possible through Helices!

Contact the AMSP

01225716492
 admin@amsp.org.uk

amsp.org.uk
Advanced_Maths

