

Advanced Mathematics Support Programme ${ }^{\text {© }}$

Did you know?

I have picked two numbers that multiply to make zero.
What can you say about my numbers?

This is useful when using factorising to solve equations.

$$
\text { If } a \times b=0 \text {, then either } a=0 \text { or } b=0 \text { (or both!) }
$$

Historically zero wasn't accepted as a number until relatively recently!

(Damsp Solving with Quadratics 1

Solve the following

1. $x^{2}=16$
2. $x^{2}-16 x=0$
3. $(x+1)(2 x-3)=0$
4. $x^{2}-3 x+2=0$
5. $(2 x-5)(4 x+3)=0$
6. $3 x^{2}+14 x-5=0$
7. $(x+3)^{2}=25$
8. $\frac{3}{x}+\frac{4}{x-1}=10$

Solving with Quadratics 1

II

Solutions on the next slide....

amsp ${ }^{\circ}$

Quadratics 1 Solutions

1. $x^{2}=16$

$$
\begin{gathered}
x= \pm \sqrt{16} \\
x= \pm 4
\end{gathered}
$$

2. $x^{2}-16 x=0$

$$
\begin{gathered}
x(x-16)=0 \\
x=0 \text { or } x=16
\end{gathered}
$$

3. $(x+1)(2 x-3)=0$
4. $x^{2}-3 x+2=0$

$$
\begin{gathered}
x+1=0 \text { or } 2 x-3=0 \\
x=-1 \text { or } x=\frac{3}{2} \\
(x-2)(x-1)=0 \\
x=2 \text { or } x=1
\end{gathered}
$$

Damsp

Quadratics 1 Solutions

5. $(2 x-5)(4 x+3)=0$

\longrightarrow	$\begin{gathered} 2 x-5=0 \text { or } 4 x+3=0 \\ 2 x=5 \text { or } 4 x=-3 \\ x=\frac{5}{2} \text { or } x=-\frac{3}{4} \end{gathered}$
	$\begin{gathered} (3 x-1)(x+5)=0 \\ 3 x-1=0 \text { or } x+5=0 \\ 3 x=1 \text { or } x=-5 \\ x=\frac{1}{3} \text { or } x=-5 \end{gathered}$
\longrightarrow	$\begin{gathered} x+3= \pm \sqrt{ } 25 \\ x+3= \pm 5 \\ x=2 \text { or } x=-8 \end{gathered}$
\rightarrow	$\begin{gathered} \frac{3(x-1)+4 x}{x(x-1)}=10 \\ 3 x-3+4 x=10 x(x-1) \\ 7 x-3=10 x^{2}-10 \mathrm{x} \\ 10 x^{2}-17 x+3=0 \\ (2 x-3)(5 x-1)=0 \\ x=\frac{3}{2} \text { or } x=\frac{1}{5} \end{gathered}$

8. $\frac{3}{x}+\frac{4}{x-1}=10$
9. $(x+3)^{2}=25$
10. $3 x^{2}+14 x-5=0$
$3 x-3+4 x=10 x(x-1)$
$7 x-3=10 x^{2}-10 \mathrm{x}$

$$
10 x^{2}-17 x+3=0
$$

$$
(2 x-3)(5 x-1)=0
$$

$$
x=\frac{3}{2} \text { or } x=\frac{1}{5}
$$

Unsure about any of these? Search ${ }^{-}$Solving quadratic equations. Next try Quadratics $2 \ldots$.

(Damsp

Solving with Quadratics 2

Solve the following

1. $x^{2}-4 x-12=0$
2. $x^{2}-x=6$
3. $2 x^{2}-11 x+12=0$
4. $6 x^{2}+x-12=0$
5. $x^{2}-4 x-1=0$
6. $\frac{8}{x+2}-\frac{14}{x-3}=9$
7. The area of this rectangle is $30 \mathrm{~m}^{2}$

a) Show that $6 x^{2}+5 x-34=0$
b) Find any possible values for x

Solving with Quadratics 2

Solutions on the next slide....

Solutions Quadratics 2

1. $x^{2}-4 x-12=0$
2. $x^{2}-x=6$
3. $2 x^{2}-11 x+12=0$
4. $6 x^{2}+x-12=0$

$$
\begin{aligned}
& (x-2)^{2}-4-12=0 \quad \text { We have used } \\
& (x-2)^{2}=16 \quad \text { completing the } \\
& x-2= \pm 4 \quad \text { square. Factorising } \\
& x=6 \text { or } x=-2 \quad \text { can also be used. } \\
& \longrightarrow \quad x^{2}-x-6=0 \\
& (x-3)(x+2)=0 \\
& x=3 \text { or } x=-2 \\
& (2 x-3)(x-4)=0 \\
& 2 x-3=0 \text { or } x-4=0 \\
& 2 x=3 \text { or } x=4 \\
& x=\frac{3}{2} \text { or } x=4 \\
& (2 x+3)(3 x-4)=0 \\
& \longrightarrow \quad 2 x+3=0 \text { or } 3 x-4=0 \\
& 2 x=-3 \text { or } 3 x=4 \\
& x=-\frac{3}{2} \text { or } x=\frac{4}{3}
\end{aligned}
$$

Solutions Quadratics 2

5. $3+2 x-x^{2}=0$
6. $x^{2}-4 x-1=0$
7. $\frac{8}{x+2}-\frac{14}{x-3}=9$
8. The area of this rectangle is $30 \mathrm{~m}^{2}$

a) Show that $6 x^{2}+5 x-34=0$
b) Find any possible values for x

$$
\begin{array}{ll}
(3-x)(1+x)=0 & \\
x=3 \text { or } x=-1 & \\
(x-2)^{2}-4-1=0 & \\
(x-2)^{2}=5 & \text { We have used } \\
x-2= \pm \sqrt{5} & \begin{array}{l}
\text { completing the } \\
\text { square. The }
\end{array} \\
x=2 \pm \sqrt{5} & \begin{array}{l}
\text { quadratic formula } \\
\text { can also be used }
\end{array}
\end{array}
$$

$$
\begin{gathered}
\frac{8(x-3)-14(x+2)}{(x+2)(x-3)}=9 \\
8 x-24-14 x-28=9(x+2)(x-3) \\
-6 x-52=9 x^{2}-9 x-54 \\
9 x^{2}-3 x-2=0 \\
(3 x+1)(3 x-2)=0 \\
x=-\frac{1}{3} \text { or } x=\frac{2}{3} \\
(2 x-1)(3 x+4)=30 \\
6 x^{2}+5 x-4=30 \\
6 x^{2}+5 x-34=0 \\
(6 x+17)(x-2)=0 \\
x=2 \text { Note } x \neq-\frac{17}{6}
\end{gathered}
$$

Side lengths can't be negative

amsp ${ }^{\circ}$

Quadthagoras

Find the length, width and diagonal of this rectangle

Quadthagoras

Solutions on the next slide....

(${ }^{2}$ ams

Quadthagoras Solution

Find the length, width and diagonal of this rectangle

$$
2 x+2
$$

By Pythagoras' Theorem: $\quad x^{2}+(2 x+2)^{2}=(3 x-2)^{2}$

$$
\begin{gathered}
x^{2}+4 x^{2}+8 x+4=9 x^{2}-12 x+4 \\
4 x^{2}-20 x=0 \\
4 x(x-5)=0 \\
x=0 \text { or } x=5
\end{gathered}
$$

- As we are finding lengths, only $x=5$ makes sense in this context.
- Therefore suitable lengths are 5, 12 and 13

An object is launched from a cliff that is 58.8 m high. The speed of the object is 19.6 metres per second $(\mathrm{m} / \mathrm{s})$.

The equation for the object's height h above the ground at time t seconds after launch is $h=-4.9 t^{2}+19.6 t+58.8$ where h is in metres.

- When does the object strike the ground?

Up in the air!

Solutions on the next slide....

Up in the air Solution

An object is launched from a cliff that is 58.8 m high. The speed of the object is 19.6 metres per second $(\mathrm{m} / \mathrm{s})$.

The equation for the object's height h above the ground at time t seconds after launch is

$$
h=-4.9 t^{2}+19.6 t+58.8
$$

where h is in metres.

- When does the object strike the ground?

The object will hit the ground when $h=0$
So we need to solve $0=-4.9 t^{2}+19.6 t+58.8$

There are other methods you can use to solve this equation

$$
\begin{aligned}
& 4.9 t^{2}-19.6 t-58.8=0 \\
& t^{2}-4 t-12=0
\end{aligned}
$$

$$
(t-6)(t+2)=0
$$

$$
t=6 \text { or } t=-2 \text { the object strikes the ground after } 6 \text { seconds }
$$

Which Way?

In the skills check you saw how we can solve quadratic equations by factorising or completing the square.

We can also use the quadratic formula, for a quadratic $a x^{2}+b x+c=0$ the solutions are given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Try solving $x^{2}+4 x-21=0$ using each of the three methods.

Try solving $3 x^{2}+4 x-2=0$ using each of the three methods.

Which Way?

Solutions on the next slide....

Which Way? Solutions

Solve by

$$
x^{2}+4 x-21=0
$$

Factorising
Completing the square
Quadratic Formula

$$
(x+7)(x-3)=0
$$

$$
(x+2)^{2}-4-21=0
$$

$$
(x+2)^{2}=25
$$

$$
(x+2)= \pm 5
$$

$$
\begin{aligned}
& \text { Which of the } \\
& \text { methods would } \\
& \text { be your first } \\
& \text { choice here? }
\end{aligned}
$$

$$
x=-7 \text { or } x=3
$$

$$
\begin{gathered}
a=1, b=4, \mathrm{c}=-21 \\
x=\frac{-4 \pm \sqrt{4^{2}-4(1)(-21)}}{2(1)} \\
=\frac{-4 \pm \sqrt{16+84}}{2} \\
=\frac{-4 \pm \sqrt{100}}{2} \\
=\frac{-4 \pm 10}{2} \\
\\
=-2 \pm 5 \\
x=-7 \text { or } x=3
\end{gathered}
$$

Which Way? Solutions

Solve by

$$
3 x^{2}+4 x-2=0
$$

Factorising

$$
\begin{aligned}
& \text { Factorising } \\
& \text { It doesn't factorise }
\end{aligned} \begin{array}{r}
\text { Completing the square } \\
3\left[x^{2}+\frac{4}{3} x-\frac{2}{3}\right]=0 \\
3\left[\left(x+\frac{2}{3}\right)^{2}-\frac{4}{9}-\frac{2}{3}\right]=0 \\
3\left[\left(x+\frac{2}{3}\right)^{2}-\frac{10}{9}\right]=0 \\
3\left(x+\frac{2}{3}\right)^{2}-\frac{30}{9}=0 \\
3\left(x+\frac{2}{3}\right)^{2}=\frac{30}{9} \\
\left(x+\frac{2}{3}\right)^{2}=\frac{10}{9} \\
\left(x+\frac{2}{3}\right)= \pm \sqrt{\frac{10}{9}} \\
\text { Horrible! } \\
x=-\frac{2}{3}+\frac{\sqrt{10}}{3} \text { or } x=-\frac{2}{3}-\frac{\sqrt{10}}{3}
\end{array}
$$

Quadratic Formula

$$
\begin{gathered}
a=3, \mathrm{~b}=4, \mathrm{c}=-2 \\
x=\frac{-4 \pm \sqrt{4^{2}-4(3)(-2)}}{2(3)} \\
=\frac{-4 \pm \sqrt{16+24}}{6} \\
=\frac{-4 \pm \sqrt{40}}{6} \\
=-\frac{2}{3} \pm \frac{\sqrt{10}}{3} \\
x=-\frac{2}{3}+\frac{\sqrt{10}}{3} \\
x=-\frac{2}{3}-\frac{\sqrt{10}}{3}
\end{gathered}
$$

Which Way Now?

There is not always one best way to solve a quadratic.
Some methods are better than others for different equations
How can you spot which is the right method for each equation?

Try this activity to improve your skills by sorting quadratic equations.

Another Way?
And of course there are the methods of solving using graphs and/or your calculator

$$
x^{2}+4 x-21=0
$$

amsp ${ }^{\circ}$

Using Graphs

Use the graphs to solve

$$
\begin{aligned}
& 4+3 x-x^{2}=0 \\
& x^{2}-6 x+8=0 \\
& 3 x^{2}-3 x-6=0 \\
& 4+3 x-x^{2}=4
\end{aligned}
$$

Using Graphs

II

Solutions on the next slide....

Using Graphs Solution

Use the graphs to solve

$$
\begin{aligned}
& 4+3 x-x^{2}=0 \\
& x=-1 \text { or } x=4 \\
& x^{2}-6 x+8=0 \\
& x=2 \text { or } x=4 \\
& 3 x^{2}-3 x-6=0 \\
& x=-1 \text { or } x=2 \\
& 4+3 x-x^{2}=4 \\
& x=0 \text { or } x=3
\end{aligned}
$$

Simultaneously

Solve these pairs of equations

$$
\begin{gathered}
\text { 1. } y=x^{2}+6 x-9 \\
y=3 x+1
\end{gathered}
$$

$$
\text { 2. } \begin{gathered}
y=x^{2}+2 x+2 \\
y-4 x=1
\end{gathered}
$$

Simultaneously

A rectangle has length $(a+b)$ and width $3 a$.
The area is $60 \mathrm{~cm}^{2}$ and perimeter is 32 cm .
Calculate, algebraically, the possible values for a and b.

In how many places does the line $y=2 x+2$ intersect the circle $(x+2)^{2}+y^{2}=25$?

What are the co-ordinates of these intersections?

Simultaneously

Solutions on the next slide....

amsp ${ }^{\circ}$

Simultaneously Solutions

2.

$$
\begin{gathered}
y=x^{2}+2 x+2 \\
y-4 x=1
\end{gathered}
$$

If you look at the graph you can see there is only one place where the line and curve meet - which is why there is only one solution. The straight line doesn't cross the curve but just touches. This is called a Tangent

Set equations equal to each other
$\longrightarrow \quad x^{2}+6 x-9=3 x+1$

$$
x^{2}+3 x-10=0
$$

$$
(x+5)(x-2)=0
$$

$$
x=2 \text { or }-5
$$

Substitute in to $y=3 x+1$

$$
\begin{gathered}
x=2, y=7 \\
x=-5, y=-14
\end{gathered}
$$

Rearrange $y-4 x=1$
To $y=4 x+1$
Set equations equal to each other

$$
\begin{gathered}
x^{2}+2 x+2=4 x+1 \\
x^{2}-2 x+1=0 \\
(x-1)^{2}=0 \\
x=1
\end{gathered}
$$

Substitute in to $y=4 x+1$

$$
x=1, y=2
$$

Damsp
 Simultaneously Solutions

A rectangle has length $(a+b)$ and width $3 a$.
The area is $60 \mathrm{~cm}^{2}$ and perimeter is 32 cm .
Calculate, algebraically, the possible values for a and b.
Perimeter:

$$
\begin{gathered}
2(a+b+3 a)=32 \\
2(4 a+b)=32 \\
4 a+b=16 \\
b=16-4 a
\end{gathered}
$$

Area: $\quad 3 a(a+b)=60$

$$
3 a^{2}+3 a b-60=0
$$

Substitute for b into the Area equation

Rearrange to look nicer

$$
\begin{aligned}
& 3 a^{2}+3 a(16-4 a)-60=0 \\
& -9 a^{2}+48 a-60=0 \\
& 9 a^{2}-48 a+60=0 \\
& (3 a-10)(3 a-6)=0 \quad \text { Can be solved by other methods too } \\
& \quad a=\frac{10}{3} \text { or } a=2
\end{aligned}
$$

Substitute back into $b=16-4 a$
When $a=\frac{10}{3} \quad b=\frac{8}{3} \quad$ When $a=2 \quad b=8$

Simultaneously solutions

In how many places does the line $y=2 x+2$ intersect the circle $(x+2)^{2}+y^{2}=25$?

What are the co-ordinates of these intersections?

Substitute for
y into the

$$
\begin{gathered}
y=2 x+2 \\
(x+2)^{2}+y^{2}=25
\end{gathered}
$$

Substitute in the x values into the linear equation to get the corresponding y values

$$
(x+2)^{2}+(2 x+2)^{2}=25
$$

$$
\left(x^{2}+4 x+4\right)+\left(4 x^{2}+8 x+4\right)=25
$$

$$
5 x^{2}+12 x+8=25
$$

$$
5 x^{2}+12 x-17=0
$$

$$
\begin{gathered}
y=2\left(-\frac{17}{5}\right)+2=-\frac{24}{5} \\
y=2 \times 1+2=4
\end{gathered}
$$

$$
(5 x+17)(x-1)=0
$$

$$
x=-\frac{17}{5} \text { or } x=1
$$

The co-ordinates of the intersections are:

$$
\left(-\frac{17}{5},-\frac{24}{5}\right) \text { and }(1,4)
$$

Lines and Curves

The diagram shows the graphs of $y^{2}=x$ and $y=x-2$

The graphs cross at the points A and B
The point C has co-ordinates $(6,0)$

- Without the use of a calculator, find the exact area of triangle ABC

Lines and Curves

Solutions on the next slide....

amsp

The diagram shows the graphs of $y^{2}=x$ and $y=x-2$

The graphs cross at the points A and B
The point C has co-ordinates $(6,0)$

- Without the use of a calculator, find the exact area of triangle $A B C$

Solution:
Find the points A and B by substituting in $x-2$ for y

$$
\begin{gathered}
(x-2)^{2}=x \\
x^{2}-4 x+4=x \\
x^{2}-5 x+4=0 \\
(x-4)(x-1)=0 \\
\text { So } x=4 \text { or } x=1
\end{gathered}
$$

Substitute these values back into $y=x-2$
Gives $y=4-2$ and $y=1-2$
$y=2$ and $y=-1$ so A is $(1,-1)$ and B is $(4,2)$

Damsp

Having found the co-ordinates of A and B
We should now look at the gradients for $A B$ and $B C$
Gradient of $\mathrm{AB}=\frac{2-(-1)}{4-1}=\frac{3}{3}=1$
Gradient of $B C=\frac{0-2}{6-4}=-\frac{2}{2}=-1$
As the gradients are negative reciprocals of each other this means that $A B$ and $B C$ are perpendicular and so triangle $A B C$ is a right angled triangle.

To find the area of $A B C$ we need to know the length $B C$ and the height $A B$

$$
\begin{array}{cc}
A B^{2}=(4-1)^{2}+(2-(-1))^{2} & B C^{2}=(6-4)^{2}+(0-2)^{2} \\
A B=\sqrt{3^{2}+3^{2}} & B C=\sqrt{2^{2}+(-2)^{2}} \\
A B=\sqrt{18} \text { or } 3 \sqrt{2} & B C=\sqrt{8} \text { or } 2 \sqrt{2}
\end{array}
$$

Area of triangle $A B C$ is $\frac{1}{2} \times A B \times B C$ so $\frac{1}{2} \times 3 \sqrt{2} \times 2 \sqrt{2}=3 \times \sqrt{2} \times \sqrt{2}$ which is 6 square units

Still want more?

Read about the history of Quadratic equations and how there are 101 uses for them!

Discover what is meant by a conic section and what on earth quadratics have to do with them.

Watch this video if you have ever been told that there are no solutions to a particular quadratic equation - because there are! They are not real though - welcome to imaginary maths! You can try a question for yourself here.

Contact the AMSP

01225716492
 admin@amsp.org.uk

amsp.org.uk
Advanced_Maths

