

Advanced Mathematics Support Programme ${ }^{\text {© }}$

(Damsp
 Did you know?

Trigonometric functions can be used to model many things that repeat over a time period, for example

Tides

Harmonic Strings

Springs

Daylight

(Damsp.
 Sketching Other Graphs 1

1. What is the mathematical name for the graph of $y=\frac{1}{x}$?
2. What are the maximum and minimum values for the graph $y=\cos \theta$?
3. Sketch the graph of $y=2^{x}$. Label the y and x intercepts
4. Using a sketch of the graphs

$$
y=\frac{1}{x} \text { and } y=x
$$

show how many solutions there will be to the equation $\frac{1}{x}=x$
5. What is the name for this type of graph?

6. What is the y intercept of the graph

$$
y=(x+2)(x-3)(x+5) ?
$$

7. What are the x intercepts of the graph $y=(x+2)(x-3)(x+5) ?$
8. Sketch the graph of

$$
y=(x-3)(x+2)(x+5)
$$

Sketching Other Graphs 1

II

Solutions on the next slide....

(Damsp* Sketching Graphs 1 Solutions

1. What is the mathematical name for the
graph of $y=\frac{1}{x}$?
$\longrightarrow \quad$ A reciprocal graph
2. What are the maximum and minimum values for the graph $y=\cos \theta$?
3. Sketch the graph of $y=2^{x}$. Label the y and x-intercepts
4. Using a sketch of the graphs

$$
y=\frac{1}{x} \text { and } y=x
$$

show how many solutions there will be to the equation $\frac{1}{x}=x$

Max value $=1$
 $\longrightarrow \quad$ Min value $=-1$

> As x gets very large y gets very large
> As x gets very small, y tends to zero but stays positive

There will be two solutions

(1)amsp ${ }^{\text {Sketching Graphs } 1 \text { Solutions }}$

5. What is the name for this type of graph?

6. What is the y intercept of the graph $y=(x+2)(x-3)(x+5)$?
\square

$$
\begin{gathered}
y \text { intercept when } x=0 \\
y=(0+2)(0-3)(0+5) \\
y=2 \times(-3) \times 5 \\
y=-30 \\
y \text { intercept at }(0,-30)
\end{gathered}
$$

7. What are the x intercepts of the graph $y=(x+2)(x-3)(x+5)$?
x intercepts when $y=0$
$0=(x+2)(x-3)(x+5)$
$x=-2$ and $x=3$ and $x=-5$
x intercepts at $(-2,0)(3,0)(-5,0)$
8. Sketch the graph of

$$
y=(x-3)(x+2)(x+5)
$$

Sketching Graphs 2

1. What is the mathematical name for graphs of the form of $x^{2}+y^{2}=9$?
2. Sketch the graph of $y=\sin \theta$ between 0° and 360°, labelling x and y intercepts
3. On your sketch for Q2 draw in the line

$$
y=0.5
$$

How many solutions are there to

$$
\sin \theta=0.5 ?
$$

Can you say what they are?
4. Sketch the graph $y=x^{3}$, labelling any intersections
5. Sketch the graph of the equation in Q1, label any intersections with the x and y axis
6. What is the y intercept of the graph $y=(x+1)(x+1)(x-1) ?$
7. What are the x intercepts of the graph $y=(x+1)(x+1)(x-1) ?$
8. Sketch the graphs of

$$
\begin{gathered}
x^{2}+y^{2}=4 \\
y=x+1
\end{gathered}
$$

Use the sketch to determine how many solutions there are when those equations are solved simultaneously

Sketching Graphs 2

II

Solutions on the next slide....

(Damsp Sketching Graphs 2 Solutions

1. What is the mathematical name for graphs of the form of $x^{2}+y^{2}=9$?
2. Sketch the graph of $y=\sin \theta$ between 0° and 360°, labelling x and y intercepts

Circles are of the form $x^{2}+y^{2}=r^{2}$

3. On your sketch for Q2 draw in the line

$$
y=0.5
$$

How many solutions are there to

$$
\sin \theta=0.5 ?
$$

Can you say what they are?

Two solutions 30° and 150° The points of intersection
4. Sketch the graph $y=x^{3}$, labelling any intersections

(Damsp Sketching Graphs 2 Solutions

5. Sketch the graph of the equation in Q1. Label any intersections with the x and y axis
6. What is the y-intercept of the graph
$y=(x+1)(x+1)(x-1)$?
7. What are the x intercepts of the graph
$y=(x+1)(x+1)(x-1)$?

y intercept when $x=0$

$$
\begin{gathered}
y=(0+1)(0+1)(0-1) \\
y=1 \times 1 \times-1 \\
y=-1
\end{gathered}
$$

y intercept is $(0,-1)$
x intercept when $y=0$
$0=(x+1)(x+1)(x-1)$
$x=-1 x=1$
x intercept is $(-1,0)$ repeated and $(1,0)$
8. Sketch the graphs of

$$
\begin{gathered}
x^{2}+y^{2}=4 \\
y=x+1
\end{gathered}
$$

Use the sketch to determine how many solutions there are when those equations are solved simultaneously

(Damsp

Which is which?

Match the graphs to the equations There are more equations than you need!

- $y=3^{x} \quad$ - $y^{2}+x^{2}=16$
- $y=\frac{3}{x} \quad$ - $\quad y=x^{2}$
- $y=\sin \theta \quad$ - $\quad y=x^{3}$
- $y=2 x^{2} \quad$ - $\quad y=\frac{1}{x}$
- $y=\tan \theta \quad$ - $\quad y=x^{2}+3$

Which is which?

Solutions on the next slide....

(Damsp

Which is which?
Match the graphs to the equations

$y=3^{x}$

$y=x^{3}$

$$
y=x^{2} \quad y^{2}+x^{2}=16
$$

$$
y=\sin (x)
$$

$$
y=\frac{3}{x}
$$

(1)amsp Sketching more than graphs

Find the shortest distance between the following curves:

A car is initially travelling at $300 \mathrm{~m} / \mathrm{min}$, it speeds up over a 20 second interval with a constant acceleration to achieve a speed of $400 \mathrm{~m} / \mathrm{min}$.
It travels at this speed for 3 minutes before slowing to a stop via constant deacceleration over a period of 30 seconds.
a) What is the car's average speed for the first 20 seconds of travel?
b) What is the car's deceleration?

A square is placed inside a circle $\left(C_{1}\right)$ so that the corners perfectly touch the circle's circumference.
Another circle $\left(\mathrm{C}_{2}\right)$ is now placed inside this square so that its circumference perfectly touches the square's sides.

What is the ratio of the lengths of the radius of C_{1} and the radius of C_{2} ?

Sketching more than graphs

Solutions on the next slides....

Camsp Sketching more than graphs Solution

Find the shortest distance between the following curves: $x^{2}+y^{2}=9$

$$
y=x^{2}+7
$$

Step 1
The equation $y=x^{2}+7$ is a quadratic and is the equation $y=x^{2}$ shifted up the y axis by 7 units so lowest point will be at $(0,7)$

Step 2

The equation $x^{2}+y^{2}=9$ is a circle with radius 3 and centre $(0,0)$ so sketch circle that goes through the points $(3,0),(0,3),(-3,0)$ and $(0,-3)$.

Oamsp" Sketching more than graphs Solution

A car is initially travelling at $300 \mathrm{~m} / \mathrm{min}$, it speeds up over a 20 second interval with a constant acceleration to achieve a speed of $400 \mathrm{~m} / \mathrm{min}$.
It travels at this speed for 3 minutes before slowing to a stop via constant de-acceleration over a period of 30 seconds.

Diagram not to scale

Oamsp" Sketching more than graphs Solution

Diagram not to scale
a) What is the cars' average speed for the first 20 seconds of travel?

Drawing the blue horizontal line on the graph is a visual way to show that the average speed is half way between $300 \mathrm{~m} / \mathrm{min}$ and $400 \mathrm{~m} / \mathrm{min}$ which is $350 \mathrm{~m} / \mathrm{min}$
b) What is the cars' deceleration?

By drawing in the red lines we can see that it takes 30 secs for the car to stop - after travelling at $400 \mathrm{~m} / \mathrm{min}$. (30 seconds $=0.5$ minutes), so \ldots
Deceleration $=400 \div 0.5=800 \mathrm{~m} / \mathrm{min}^{2}$

Oamsp" Sketching more than graphs Solution

A square is placed inside a circle $\left(C_{1}\right)$ so that the corners perfectly touch the circle's circumference.

Another circle $\left(\mathrm{C}_{2}\right)$ is now placed inside this square so that its circumference perfectly touches the square's sides.
What is the ratio of the lengths of the radius of C_{1} and the radius of C_{2} ?

Assume inner circle has radius of 1 unit. Therefore square has side length of 2.

Using Pythagoras' theorem we can calculate the length of radius of circle 1 to be $\sqrt{2}$.

Challenge ahead!

The activities on the next few slides may contain some content from A level maths; for that reason they are optional, but still fun and worth trying!

Solve $(\sin x+1)(2 \cos x-1)=0$ for $0<x<360^{\circ}$

A Triggy Problem

Solutions on the next slide....

Triggy Problems Solutions

Solve $(\sin x+1)(2 \cos x-1)=0$ for $0<x<360^{\circ}$
Fortunately, this is an already factorised quadratic. So.....

$$
\begin{gather*}
\sin x+1=0 \\
\sin x=-1 \\
x=\sin ^{-1}(-1) \tag{or}\\
x=270^{\circ}
\end{gather*}
$$

$$
\begin{gathered}
2 \cos x-1=0 \\
2 \cos x=1 \\
\cos x=\frac{1}{2} \\
x=\cos ^{-1}\left(\frac{1}{2}\right) \\
x=60^{\circ} \text { and } 300^{\circ}
\end{gathered}
$$

A cubic match up
Which one of the equations below describes the graph?

- $y=(x+1)(x-1)(x-2)$
- $y=-x(x-1)(x+1)$
- $y=x(x-1)(x+1)$

A cubic match up

Solutions on the next slides....

amsp ${ }^{\circ}$

A cubic match up Solution

Which one of the equations below describes the graph?

A negative cubic starts in the top left quadrant and finishes in the bottom right quadrant so it can't be the second equation

Consider when $y=0$ to find the x intercepts

$$
\begin{array}{r}
y=(x+1)(x-1)(x-2) \\
x=-1, x=1, x=2
\end{array}
$$

- $y=-x(x-1)(x+1)$ $x=0, x=1, x=1$
- $y=x(x-1)(x+1)$ $x=0, x=1, x=1$

Both of these equations have the correct intercepts but which is the correct graph?

$$
\text { The correct equation is } y=x(x-1)(x+1)
$$

Extend what you have learnt about quadratics to help you match up the cubic graphs in this Desmos activity

\downarrow
Learn more about factorising cubics in this activity - with solutions

Catching Stars

Click here to try our Exponential Marbleslides Challenge
You will be investigating the features of exponential graphs whilst trying to catch as many stars as possible

You can join the activity without signing in or entering your real name.

Still want more?

Read about Euclid's Axioms and discover how they might be used in this interactivity. Sketches and diagrams help with more than just questions about graphs!

Play 'Euclidea' to explore more about Euclidean Geometry and constructions.

Watch this video to see how you can 'graph' art! To see all the finalists in the Desmos Art competition (and get inspiration to enter it yourself in the future) click here.

Contact the AMSP

01225716492
 admin@amsp.org.uk

amsp.org.uk
Advanced_Maths

